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Abstract

A semiclassical theory is developed to treat the interaction of

radiation with an atom located near the surface of an m-component

superlattice. For the special case of m - 2, the radiation penetration depth

into the superlattice and the resonance fluorescence spectrum are calculated

numerically for superlattices of metal-insulator construction. The results

show sensitive dependence on the plasma frequency in the metal layer as well

as on the dielectric function and width of the insulator layer.
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I. Introduction

When an atom or molecule near or adsorbed on a solid surface interacts

with a radiation field, the presence of the surface and substrate greatly

influences the optical phenomena. Examples include surface-enhanced Raman

scattering, I1 2 coherence and energy transfer in spontaneous emission,
3 -6

7-13
surface-induced resonance fluorescence, and so on. The optical properties

of adspecies on a solid surface may provide a sensitive probe of electronic

and other structure of the substrate, and hence has prompted a careful re-

examination of the optics of surfaces. Once the mechanism of these optical

processes is fully understood and brought under experimental control, it

should become a powerful tool for the analysis of surface processes.

On the other hand, when a strong driving coherent field is nearly on

resonance with the adatomic transition frequency, the field places the driven

atom in an environment in which the probability of stimulated emission may

exceed that of spontaneous emission. When this is the case, ac Stark

splitting of the atomic levels, Rabi oscillations of the level occupation

probabilities and nutational oscillations of the stimulated field intensity
7-14

are enhanced. Consequently, resonance fluorescence and other nonlinear

optical phenomena become possible.1 5 ,1 6 Because multiphoton transitions are

just as important as the single-photon transition in such light-driving

processes, the ordinary perturbation method is no longer reliable.

15
In the surface-free case such as atoms in a gas, such processes can be

effectively dealth with by the well-known optical Bloch equation (OBE). With

the presence of the surface, a set of surface-dressed optical Bloch equations

(SBE) has been derived 7-10 to treat such problems as the effects of surface-

reflected photons, the resonance interaction of an adatom with surface

plasmons, collisional dephasing of the adatom due to the gas atoms in the



medium, and random phase fluctuation of the intense laser field. Resonance

fluorescence has been investigated for an adatom near a flat metallic

surface7 ,2 and near a rough metallic surface represented by a hemispheroid

protrusion on a flat surface. , More recently, a different approach

17
involving reservoir theory and Dekkars's quantization procedure for a

dissipative system'
1 8 1 9 has been adopted to derive another set of the SBE.

It

The resonance fluorescence spectrum of an adatom has been analyzed for the

following cases: an adatom is considered near the surface of a metal sphere

12
with the size of the sphere taken into account, and the problem is considered

again near the surface of a semi-infinite conductor and dielectric superlattice

in which the frequency of the transverse optical phonon matches that of the

adatomic transition.

We investigate, in this paper, the resonance fluorescence spectrum of an

adatom near the surface of a superlattice. The adatom is taken as an emitting

dipole. The emitted field is reflected back from the surface and interfaces

and is coupled to the radiating dipole whose dynamical behavior is therefore

totally changed. We first develop the theory for a general superlattice

composed of m different layers per period. This theory may be applied to

simulate quasi-periodic systems. 20 ,2 1  Numerical results are given for the

special case of m - 2.

II. Theory

For a two-level atom driven by a monochromatic laser field with

E(t) - I (Ee + E*e ) , ()

2
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the SBE are given by
1 ' I4

<S+>- iA- -Y -i 0 <S r+ > 10

dt < > iQ*/2 -2 -y -iQ/2 <SZ> 7 (2)

< 0 i* -i(A+Os) )- 7< s - > - O0

The notation is as follows. The adatom with a transition frequency W is

located at a distance d away from the surface of the superlattice. Theo

matrix element of the electric dipole moment operator is denoted by Ipl, and E

and w are the amplitude and frequency of the external laser field,

respectively. The detuning is A - w w , and the Rabi freuquency is 0 -

IpIE. The transition probability amplitude is proportional to the projection

operators defined by

S+ - 1+X-l

S- l-><+-

The total decay rate of the adatom can be written as

0 s (4)

where -y0 is the decay rate in the absence of the substrate,
2 2

o- 3 23/c3
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and

IP 2 Im f(do) (4b)

is the decay rate induced by the surface. The frequency shift of the

spontaneous radiation due to the surface is

c s - Ip 2 Re f(d ) (5)
0

and the function f(d ) is determined by 1 1
0

ER - IpIf(do)S = pf(do) , (6)

where ER is the component of the reflected field ER in the direction of p.

Equation (2) agrees with the result from linear response theory when

the adatom is taken as a harmonic oscillator. With the aid of the regression

theorem for correlation functions,2 3 1)1 we find from the SBE the well-known

results of the incoherent resonance fluorescence spectrum,1
2 t1

inc(v) - 1 1I1 4 (D2 + 1 1012 + 41 2 )/(.11012 + Izi2)(x2+y2 ) (7)

where D - v w z - y + i(A+Q s )  x - 27( .10 2 + Izi 2  2D 2 ), and
2 22

y - D(1012 + Izi 2 + 4 72 D 2).

Consider now a semi-infinite superlattice consisting of m different

layers per period as shown in Fig. I. The surface is taken to be the xy-

pln, an naao ihdpl oet i oae tr- r- (O,O,-do).
plane, and an adatom with dipole moment p is located at r 0

The dielectric constants and thicknesses of these layers are ei and di,
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respectively, where i - 1, 2, ..... m. The reflected electric field at r0 from

a substrate of a two-compoo3nt superlattice has been worked out in Ref. 8. We

now generalize the theory to the case of an m-component superlattice in which

the thickness of each period is L. The set of equations for the fields E and

H in different materials can be obtained directly from Maxwell's equations.

The results areG
I I; 13,14

VE+ 0k 2 0 - 41rk 0P + LEVV.)OO O E
0

=x _ z < 0 (8a)
0

2- 2-

E + ikoEI = 0 V E- 0

1 ik V x E nL < z < nL + d (8b)

0

2- 2- -E
V E2 + 2 koE2 0 V 2 - 0

H2 ik V x E2 nL + d z < nL + d1 + d2 (8c)k1

2- 2--V2E + e k2E -0 , V E -0m mom m

H m i V x E , (n+l)L- dm z < (n+l)L (8d)

where k - w/c is the wave number in vacuum, n labels the period in the
o

superlattice, and Pis defined by



(ro) - p(w) S(r-r0 (9)

The solution for the electric field in Eq. (8a) can be written as

r J ik'.r .-

E(r w) - f du dv E(u,v, w) e + E (,r,), z < 0

(10)

- 0 k'- (kv-w) w 2  k 2 _>

where we have defined k - (k1jw) = (u, v, w). The field due to the dipole is

2-4 -1i-

(r,0) - du dv-I V(pV)

p 2xi w

x exptiu(x-x ) + iv(y-y ) + iwlz-oz01 (01)

Because of the periodic structure of semi-infinite superlattice, the electric

field may have a Bloch-wave-like form with an envelope function decaying

exponentially with increasing z. Thus we find solutions for the electric

field of Eqs. (8b)-(8d) 13, 2 as

_# _*iwl(z-nL )

E 1 (r, W) - fdu f dv { (u,)vww) znL)

+ E (u,v,w) e e •

1• -, z (12a)
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k 1 -(k 11,w1  k - (k w)

2 12 _LznLd 2
w -k knL < z < nL + d

-+ ~iw 2(z-nL-d I1

E (r,w) -Jdu Jdv {g+)(u~v~w) e i 2 zn- 1

- -iw 2 (z-nL-dl)I ikr - PnL+ (u,v,w)e e

2

k " C k = 0 (12b)

2 2 k2 2

2 (kll'w2) ' k2- (kll'w 2 )

2 2 2
w2  fk 0 - ki, nL + d, < z < nL + dI + d2

- f f (  W iw [z - (n+1)L + d](r w) - du dv +)uvm e m
m m

+ eim(uvw) e iw [Z - (n+I)L + d in} ikier - nL

m

k + k E ( ) - 0 (12c)
m m m m

k (ik1 1W k' - kl-

m m m m-- -

w ce k 2ave k 2(n+d)L - d z (n+s)L

where we have introduced a parameter # to measure the rate of absorption.



For simplicity, we assume that the dipole is orientated perpendicular to

.he interfaces of the superlattice. We can then follow the standard procedure

to find the component of the reflected field along the dipole direction at r .

Equations (12) together with the usual Maxwell boundary conditions at the

surface and interfaces then yield

3
E= k p 0(do) (13)
R k o

0

o(d) k 3 kdk e 0 0 "'0 d 0 (14a)

1= - 2 r
m -l (1 - V 1 0 ) e L

N 1 N. N

+ v[ - (-i) mVmo Nexp[i (-1) J U.d ]

N-0 j-lmn N2 ""' N-I0

m-I N +N +i
XII !i + (-I) V2 2+1 (14b)

2=1

W2 2 m-1(I + V 10 ) e OL

1 N m N. A

- 2 [I + (-I) 'v] 2 exp[i ) (-I) J U.d.j
mom

N-0 NNm  112 .,m 1 0 j -

x II [1 + (-I) V 2 2 1+i] (14c)
2-1

.2
where N 1-N m - 0, V n1 6 -U I/CIU noU- k - k od I'and
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n = 1, 2 ..... m. Because of the periodicity of the superlattice, we define

V i, m The symbol means summation when m > 3 and no summation when

M = 2. The attenuation factor e L is determined by the equations

e = 1 [n ± A/2 _-4 I ReO 0 (15)
2

Y7 2 1m Cos m j N. ^ m _JNO+N2+I 1

N..cos (-i) J U.d.] H [1 + )2,2+]
N NJ j 2-1

(16)

If the superlattice is composed of highly-dissipative materials, the incident

electric field cannot go very deep into the layers. When the condition L << A

is satisfied, which is usually the case, we can define the penetration depth

for the field as

d - aL - (Reo) , (17)

where a is a positive number.

It is observed from the above equations that both the reflected field

and the penetration depth depend strongly upon the number of layers per period

as well as the thickness and dielectric properties of the individual layer.

Meanwhile, the surface plasmon TM modes are determined by the zeroes of the

denominator, namely, 02 - 0. The properties of the surface plasmon as well as

the interference between the electric fields reflected and refracted at each

interface play very important roles in the determination of ER, both its

amplitude and its phase.



1i

To find the spontaneous decay rate and frequency shift, we first note

that a comparison of (6) and (13) yields f(do) = k o(d Substituting
0 E 0 0

0

into (4) and (5), we obtain

I + i 33/2 Re O(d) (18a)

s 3 -3/2
a 2 Co Im O(d ) (18b)

expressed in the unit ofo

III. Numerical results

Th theory developed above is valid for any number of layers in one

period of the superlattice. In what follows, we shall apply it to a typical

case of two-component superlattices. The first layer in each period is a

metal with dielectric function Ei(W) - I - W2 /(2 + iW) while the other is
1p p

an insulator with a wide energy gap. Setting m = 2 in Eqs. (14b), (14c) and

(16), we have

-~ -2(l-V 10 ) e OL + [(l-V 2 0 )(l+V 12 )e u2 d2

+ (l+V 20 )(l-V 1 2 ) e- ]U2d e iu1d1(19a)

A

iU2 d 2
-2 2(l+Vlo)e L - [(l+V20)(I+VI 2)e 2
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A A

(l-V20)(1-Vl2)e 22 e 1 (19b)

7 - 2 (1+V12 )(l+V 2 1 )cos(U1d1 + U2d2 )

A A1

+ (1-V12 )(1-V 2 1 )cos(U1 d1 -U2d2)] . (20)

We look at the penetration depth for normal incidence of light with

frequency w. From (15), (17) and (20), we calculate d as a function of the

adatomic transition frequency. The results for different layer thicknesses

are shown in Fig. 2, in which we have defined x - wo/wp . It is observed that

for fixed w, the penetration depth has a sensitive dependence on the charge

carrier density in the metal layers. It decreases with increasing carrier

density, which is easy to understand because a large carrier density results

in more collisions and therefore more energy loss of the incident radiation.

Furthermore, we also see that the larger the fraction that the nonabsorptive

insulator in each period occupies, the deeper the field penetrates into the

superlattice.

The incoherent part of the resonance fluorescence spectrum may be

investigated numerically. We find again that the spectrum is extremely

sensitive to the plasma frequency or the density of charge carriers in the

metallic layers. When w is fixed, different carrier densities may result in

spectra with different number and shape (height and width) of peaks as well

as the position of sidebands. The situation is illustrated in Fig. 3 in which

the spectrum is shown as a function of D [defined just beneath Eq. (7)] for

various values of x. That the sidebands do not appear in the case of the

one-peak spectrum may be understood as follows.
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When x is such that 0, is near its minimum, the resonance condition for

the surface plasmon to exist is nearly satisfied. The creation of the surface

plasmon then enhances the absorption and results in a single-peak spectrum.

This is because non-radiative energy transfer to the surface plasmon becomes

very strong near resonance and hence greatly increases the absorption of the

incident energy by the surface via the adatom. Consequently, the scattered

field intensity is too weak to produce the sidebands of the spectrum. On the

other hand, when x is such that 02 is far from its minimum, this absorption

process is insignificant, and the spectrum has three peaks which are all high

and narrow, provided that there is no significant absorption resulting from

the multibeam interference.
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Figure Captions

1. Schematic diagram of a semi-infinite superlattice with period L. An

atomic dipole moment is located in front of the surface.

2. Penetration depth as a function of x for a metal-insulator two-component

superlattice. The parameters employed are: yp - 0.01 w p, 2 = 0.3, d -

0.1 and (a) d - 0.5, (b) d2 - 0.2.

3. Incoherent resonance fluorescence spectrum from a two-component metal-

insulator superlattice for different x values. The parameters are: A -

2.0, 11 - 45, 7 p 0.01 Wp I 2 3.0, 0.1, d 3  - 0.5 and (a) x - 0.1,

(b) x - 0.2, (c) x - 0.3, (d) x - 0.4.
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